

DLA's Lead Center For Aviation Support

ENVIRONMENTAL RESTORATION PROGRAM

How Contaminants Move in the Environment

A DSCR Restoration Advisory Board (RAB) Technical Training Session

Presented by John W. Anthony Mitretek Systems

January 9, 2006

Environmental Media That May Be Contaminated

Terrestrial Organisms

Air

Different Types of Common Contaminants

Metals (e.g., Arsenic)

What Happens After Contaminants are "Out There"?

Move somewhere else

Stay where they are

Disappear (change into something else; which then either stays put or moves)

What Makes Contaminants Move?

- Forces acting on contaminants influence them to move (gradients)
 - Potential Gradient = move from higher pressure (elevation) to lower pressure (elevation)
 - Concentration Gradient = move from higher to lower concentration

Nature ALWAYS seeking balance

What Makes Contaminants Stay Where They Are?

- Forces to move contaminants may not exist
 - DNAPL sinking into a "bowl-shaped" clay lens
 - Contaminant gets
 "stuck" to
 surrounding
 media
 (e.g., sorption
 to soil)
 - Buried drum containing waste oil

DNAPL and LNAPL in the Subsurface

DNAPL in the **Environment**

Later ...

(Schwille, 1988)

Residual DNAPL in the Subsurface

Contaminant Transport Mechanisms and Concepts

- Dissolution (NAPL dissolves into water)
- Advection (movement caused by pressure or elevation gradient)
- Dispersion ("spreading" as contaminant moves through soil)
- Diffusion (movement caused by concentration gradient)
- Retardation (contaminant slowed during movement)
- Volatilization (contaminant changes from solid or liquid to vapor phase)

Dissolution, Advection and Dispersion

Dissolved-Phase Advection and Dispersion at DSCR

Volatilization and Movement as Vapor

Physical Model ("Sand Tank")

Physical Model (Cont.)

Contaminant Introduced

Contaminant Introduced (Cont.)

Contaminant Introduced (Cont.)

Advection Begins

Advection Continues

Dispersion Apparent

More Dispersion

Groundwater Extraction

Groundwater Extraction (Cont.)

Contaminant Migration Continues ...

Much Later ...

Coming Attractions

- How contaminants are introduced to the environment
- How contaminants move in the environment
- Fate of contaminants in the environment

Wrap Up

Questions?

Thank you for your attention!